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The problem [l-S] of the control u which ensures convergence of the pursuing motion 
Y [II with the pursued motion z Ill is considered. The regularization of the extremal 

aiming rule [6 and 7] announced in paper [S] is investigated. 

1. Let us consider the pursuing (y [t]) and pursued (z Itl) motions described by the 

differential equations dyldt = f”’ I y, ul (4 4 
d&t = f(*) Iz, ~1 (1.2) 

Here y, z are the n-dimensional phase vectors of the objects ; u, v are the r-dimen- 

sional control vectors ; I(‘) are known differentiable vector functions. The process begins 

at some instant f = t,. The realizations u [t] and v [t] of the controls u and u are 

restricted by the conditions U it] E u, v [il 6Z v (1 > to) (1.3) 
where u, v are given bounded domains in the spaces {u) and {V}. Encounter at the 

instant t = t, is defined as the situation satisfying the condition 

{Y [tJh = (2 It,l}m 0.4) 
(The number m is given ; the symbol’ (W} m denotes the vector consisting of the first 

m components of the vector w.) The pursuer’s objective is to achieve encounter. The 
control u’is formed by the feedback principle at each instant t > t,on the basis of in- 
formation concerning the situation until this instant. We assume that the pursuer can 
meet with any permissible realization u [1] of the control. Construction of a workable 

control in the form of the function 
u [tl = 24 (y ItI, z ItI) (1.5) 

involves certain difficulties [l-6]. One way to overcome these difficulties is to enlarge 
the set of arguments in (1.5). In this paper we shall investigate one such method of re- 

gularizing the problem. This method is based on the extremal aiming rule [S], which is 
in turn based on the retention of the attainability domain G(*) [z It], q It]] of the mo- 

tion z [t] in the attainability domain G") [Y [t], q [tll of the motion y [t] during vari- 
ation of the time t under the condition that the absorption time 6” [t] = t + q [t] 

does not increase (e.g. see [7]. p. 331). We shall investigate the regularization of this 
rule which adds the argument ‘1 [tl to (1.5) and introduces a certain time lag t into 
the aiming condition. This method of regularization is proposed in [6]. It is realized in 
the form of a discrete approximating scheme which differs from the regularizing schemes 
described in [8-101 in that it also introduces the time lag E_ This broadens the oppor- 
tunities for control, but gives rise to new problems about the stability of the process. 
Investigation of this stability exceeds the scope of the present paper and will be the sub- 
ject of a future study. 

9. Let us construct the approximating extremal control ~a”. We begin with some 
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remarks about notation. The subscript 8 emphasizes that the realizations Us [i] of the 
control &are constant in the interval Z;L < t < fL+s (TV = t, + k&, li ) 0, k = 
= 0, i,...). With the chosen controls u and t’ symbol Tc,., denotes the instant when 
the inequality 

[(y ]TcUV,l - z [Te,,,ljm 1 < e (2-f) 
holds for the first time for the motions y ]t] and Z It] under consideration. 

(The symbol 11 w 11 d enotes the Euclidean norm,of the vector w.) By definition, the 

control ubdefined for all sufficiently small & > 0 ensures convergence of the motions 
y [t] and z [t] not later than at the instant t = T” provided that the condition [lo] 

is fulfilled. 
(2.2) 

The symbols G(l) [y, qf and G@j [Z, q] denote the attainabili~ domains ( r7], p. 116) 
for the motions y and ~3 , respectively (from the states y [s] = y, Z [ t] = z by the 
instant 6 = t + *I).. The symbols G(r) [y, 11; e] and G(s) [Z, q; e] represent the 
closed &-neighborhoods of the domains G”) and 61’) (in a metric defined by some 

norm Y). 
The extremal control 

Go [4 = us0 IYl~kl, z Id, tl [qill (2.3) 
(r&yQ~<Q,,) 

is formed as follows. The quantities j/ ft], z ft] vary in accordance with Eqs. (1, I), 
(l.‘L), where c = c it] and u = uIO [t]. The quantities ‘1 ft,] are defined recurrently. 

For zg = t, we set q Ire] = 6” ]ie] - ~a,where 6 = 6” (-co] is the instant of 

absorption of the process Z by the process y, when Gczl ]z [T,], 6-~,,] c G(s) ]y Ire], 

6 - ~1 for the first time. Now let the quantities g [rx], z [Q] be realized at the 

instant t = TI; , and let us determine the instant of absorption 6” ]I&] for these quan- 

tities. lf 6” IT,,] < T&_, + q [T,,], then we set tl [TJ = 6” [r,] - tk ; but if 

6” 1~1 > T#_~ + q [tr_J, then q [rkl = q Irk_,1 - 6. 
Let us choose some function & (6) satisfying the condition 

lim5(6)=0 as 646 (E>b) (2.4) 
For known y ]rJ, z [Q], q ]T&] , among the permissible program controls u (T) 

(% < t < T1; + 8 restricted by the condition u (T) E u there exists a control 

U, (li) which delivers the minimum e* [Q] of the quantity e satisfying the condition 

G’*‘IZ IQ], tj Irk]] c: G(t) ]y,, (T* + E), ‘1 f$f; c] (2.5) 

Were &I @r + E) is the state to which the system 

2 = f(l) ]$J, U] (2.6) 

is brought by the control u (T) by the instant T = r, f 6 (from the state y [Tk]). 
The control ubO (2.3) is now defined by Ziril 

uci”[t] = f 5 u,(r)dz (2.7) 

Tx 
3, Now let us formulate a definition of the property of stable absorption of the pro- 

cess z by the process y for the system (1. l)-( 1.3). 

Let O< 9e < ‘1 <rl” < =,a>0 , and let some values of z It], y ft] such 

that 
be realized. 

G”‘[z[t] t q] c G”‘[yltl q- ~1 t * .@*>%>a (3.U 
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Further. let some value 2 It + 41 be realized. We say that the process 2 is “stably” 
absorbed by the process y if, whatever the possible realizations z It], z [t + ij], y [t] 
and whatever the quantities ‘lo, rl”, e, for all sufficiently small 6 > 0 there exists 

among the permissible controls u (r) (t < T < t + b) a control u l (T) which brings 
the system (2.6) to a state y,* (t f 6) satisfying the condition 

G(*)[z It + 61, q - 61 c GWy,* (t + 4). ‘I - 5; a*] (3.2) 
where 

n* < (1 + B (%t$o) 4 8, (B < 00) (3.3) 
The following statement is valid. 
T he ore m 3.1. If the process z is stably absorbed by the process g , then the extre- 

ma1 control ttb* (2.7) ensures convergence of the motions 0 [t] and z [t] not later than 
at the instant t = 6” It,]. (We assume, of course, that an instant of absorption 

6” [t,] < oo exists for the given 9 [t,] and z [t,} ). 
To prove the theorem we need merely show that the quantity e* .[r,] which minimi- 

zes e in condition (2.5) remains smaller than any number e” > 0 chosen in advance, 
provided that the scheme interval 6 > 0 is sufficiently small. To this end we estimate 
the changes in the given quantity with the time ‘ft. Clearly, we need only consider the 

case where e* [tl > e, > 0 and ?lo < rj < q”. Thus, let us estimate the change 

in the quantity e+ ftf in a single step [r,, it+,). If the control IL* (L) has operated 

over the given interval T& < f < ‘C&+1 , then condition (3.3) yields the inequality 

c* (Tk+J < (i + 8 (ri,, rlO) 4) e* M t33.4) 
However, the control which actually operates during the interval r& t < $.+f iS 

the average control ubO [f] (2.7). This averaging in our estimate of the quantity 
e* [Q+~] yields an effect of a higher order of smallness in b. In this fashion we arrive 

at the estimate 49 [%+*I < (1 + B (‘lrc rlO)d) e* [al + o (6) (3.5) 
which implies the validity of the theorem. 

N o t e 3.1. Let the attainability domains G tf) be closed. This applies in a broad 

class of cases, Further, let the domain G’i’ [Y, rl] be convex. It then constitutes the inter- 

section of its support half-spaces ( [ll], p. 781) and is described by the relation 

P”’ I& YI rlJ - I’!$ > 0 

which every point q E G(l) must satisfy for all possible values of the vector I. (The 

pqme indicates transposition). Let G(s) Ir, ql be the convex shell of the domain 

Gf21 (z, n] and let the domain G(@ Is, 111 be described by 

The property of stable absorption of the process z. by the process y is then fulfilled 
if for small b > 0 we have 

provided that 
T” [PO) [I. Y f% 11- P(2) tr, g [(I* rlll ft. > 0 

when v* [lf = i. Iiere y* [I] is the norm of the vector 1 in the appropriate metric. 
When the function in the left side of (3.6) is convex in I and concave in u, and when 
the set U in condition (1.3) is convex, the operations mar, and mint in (3.6) can be 
permuted, with the result that the determination of the function uI (r} now rests on the 
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ordinary conditions of the maximum principle [l.Z]. Such ordinary conditions are closely 
related to the cases of regular absorption of the process z by the process y considered in 

[9 and lo]. Also of interest, however, is the special case in which the absorption of the 

process z by the process y is irregular, and when the functions under consideration are 

not convex in I. Computation of the function u, (r) then entails additional complica- 
tions. 

N o t e 3. i? . The limiting motions Ye [r) generated by the approximating scheme for 
the control u &“ as 6 --) 0 can be formalized within the framework of the general solu- 

tions 1131 obtained by means of discontinuous differential equations. The control 8“ is 
constructed formally in the following way. If the inclusion 

G’” [a (r], Tj frtl c d” (YU* (t + E)* ‘1 PI] 

is valid for given Y I:], z It], ‘1 ]I], E [r] , then the function u” (Y, z, 9, E) is assumed to 
be non-singlevalued at such a point {Y, z, q, E} , and can assume any values which satisfy 

the prescribed restriction u” E L:. However, if only the inclusion 

c’*) Ir It], 1 IfI1 c cc”) Iv,* (L + E), ‘1 ItI; @I (3.7) 

is fulfilled for the given Y, z, ‘1, & , then u’ It] is given by 1 E 

f.P fs] = Ma (Y I% z Iq. q ItIt E ItI) = &- s % (7) cfr (3.8) 

Some remarks concerning the character of variation of the variables ‘1 [I] and E ft]. 
are called for here. We assume that the function t) ftJ is described by the differential 

equation dij I dt = - i, and that E I:] is a continuous nondecreasing function restricted 

over its intervals of increase by the condition 

where a (t, n) is a function satisfying the appropriate conditions of smallness. Under 

these assumptions the solution y [tJ of Eq. (I. 1) is defined as an absolutely continuous 
function which satisfies Eq. (1.1) ‘for u = uo If] for almost all values of t. 

We can verify the existence of the solution Y[r] by taking the limit of the approxima- 
ting solutions ya [t] constructed according to a scheme similar to that constructed in 

Sect. 2 
The conditions under which the required solutions y* [g] exist reduce here to the con- 

tinuity of the function u” in the range where it is single-valued, and to certain known 

functional restrictions on f(l) fY, u] which are typical for problems on the construction 
of generalized solutions of discontinuous equations 2133. In any case, these conditions 
are fulfilled for a broad class of linear systems under convex restrictions on the control 

u. The condition of stable absorption of the process z by the process y then proves that 

for motions 9,” [t], z 111, n If], j It] satisfying the initial conditions rl [to] = 6 [to] - ZQ, 
E [to] = 0 the extremal control u0 ensures encounter not later than at the instant t = 
= 60 [to]. The validity of this statement foliows from the fact that the function .a* 111 
does not increase during the generalized motions Ye 111 under consideration and there- 
fore remains equal to zero all the time. This fact follows in turn from the circumstance 

that for a* It] # 0 the quantity E* If] cannot increase too rapidly for t > t, , since for 
u = u* the function e* It] satisfies estimates similar to estimate (3.5) which is valid 
for a discrete scheme. We note that the motion Yc If] is generally realized in the form 
of slip conditions. We also note that the pursuit process is improved for the pursuer if 

we replace Eq, dq I Jf =: - 1 for the function 1~ It] by the differential inequality 
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dq I dr < - f and imposing certain other restrictions on the function t) (t J . However, 
this complicates determination of the generalized solution Y* ItI of Eq. (1.1). 
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STABILITY OF MOTION OVER A FINITE TIPE IN~RVAL 

PMM Vol. 32, N36, 1968, pp. 977-986 

K. A. ABGARIAN 

(Receive!l”gyF I, 1968) 

A family of necessary and sufficient conditions for the stability and instability of motion 
over a finite time interval is constructed. This is made possible by a generalization of 

Kamenkov’s formulation of the problem of stability over a finite time interval. 

1, In his investigation of mechanical systems whose perturbed motion is described by 
the equations dZ 

2 = X,(f; 31,. . *, &tn) 
dt 

(i=i,...,n) 0-Q 
where Xi are real functions of real variables which vanish for Z$ = 0 (i = I,,.., n) 
and can be expanded in series in &hole nonnegative powers of Xi in the neighborhood of 
the origin (Xi = #), Kamenkov introduced the following definition of stability of motion 


